Copied to
clipboard

G = C23⋊Dic11order 352 = 25·11

The semidirect product of C23 and Dic11 acting via Dic11/C11=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23⋊Dic11, C23.2D22, (C2×C44)⋊1C4, (C2×C4)⋊Dic11, (C2×C22).2D4, C112(C23⋊C4), (C22×C22)⋊2C4, (C2×D4).3D11, (D4×C22).6C2, C23.D112C2, C22.15(C22⋊C4), C22.2(C11⋊D4), (C22×C22).6C22, C2.5(C23.D11), C22.3(C2×Dic11), (C2×C22).29(C2×C4), SmallGroup(352,40)

Series: Derived Chief Lower central Upper central

C1C2×C22 — C23⋊Dic11
C1C11C22C2×C22C22×C22C23.D11 — C23⋊Dic11
C11C22C2×C22 — C23⋊Dic11
C1C2C23C2×D4

Generators and relations for C23⋊Dic11
 G = < a,b,c,d,e | a2=b2=c2=d22=1, e2=d11, ab=ba, dad-1=ac=ca, eae-1=abc, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=d-1 >

2C2
2C2
2C2
4C2
2C22
2C4
4C22
4C22
44C4
44C4
2C22
2C22
2C22
4C22
2D4
2D4
22C2×C4
22C2×C4
2C44
2C2×C22
4Dic11
4C2×C22
4Dic11
4C2×C22
11C22⋊C4
11C22⋊C4
2C2×Dic11
2C2×Dic11
2D4×C11
2D4×C11
11C23⋊C4

Smallest permutation representation of C23⋊Dic11
On 88 points
Generators in S88
(1 85)(2 31)(3 87)(4 33)(5 67)(6 35)(7 69)(8 37)(9 71)(10 39)(11 73)(12 41)(13 75)(14 43)(15 77)(16 23)(17 79)(18 25)(19 81)(20 27)(21 83)(22 29)(24 53)(26 55)(28 57)(30 59)(32 61)(34 63)(36 65)(38 45)(40 47)(42 49)(44 51)(46 72)(48 74)(50 76)(52 78)(54 80)(56 82)(58 84)(60 86)(62 88)(64 68)(66 70)
(1 12)(2 13)(3 14)(4 15)(5 16)(6 17)(7 18)(8 19)(9 20)(10 21)(11 22)(23 67)(24 68)(25 69)(26 70)(27 71)(28 72)(29 73)(30 74)(31 75)(32 76)(33 77)(34 78)(35 79)(36 80)(37 81)(38 82)(39 83)(40 84)(41 85)(42 86)(43 87)(44 88)(45 56)(46 57)(47 58)(48 59)(49 60)(50 61)(51 62)(52 63)(53 64)(54 65)(55 66)
(1 59)(2 60)(3 61)(4 62)(5 63)(6 64)(7 65)(8 66)(9 45)(10 46)(11 47)(12 48)(13 49)(14 50)(15 51)(16 52)(17 53)(18 54)(19 55)(20 56)(21 57)(22 58)(23 78)(24 79)(25 80)(26 81)(27 82)(28 83)(29 84)(30 85)(31 86)(32 87)(33 88)(34 67)(35 68)(36 69)(37 70)(38 71)(39 72)(40 73)(41 74)(42 75)(43 76)(44 77)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)
(1 85 12 74)(2 84 13 73)(3 83 14 72)(4 82 15 71)(5 81 16 70)(6 80 17 69)(7 79 18 68)(8 78 19 67)(9 77 20 88)(10 76 21 87)(11 75 22 86)(23 55 34 66)(24 54 35 65)(25 53 36 64)(26 52 37 63)(27 51 38 62)(28 50 39 61)(29 49 40 60)(30 48 41 59)(31 47 42 58)(32 46 43 57)(33 45 44 56)

G:=sub<Sym(88)| (1,85)(2,31)(3,87)(4,33)(5,67)(6,35)(7,69)(8,37)(9,71)(10,39)(11,73)(12,41)(13,75)(14,43)(15,77)(16,23)(17,79)(18,25)(19,81)(20,27)(21,83)(22,29)(24,53)(26,55)(28,57)(30,59)(32,61)(34,63)(36,65)(38,45)(40,47)(42,49)(44,51)(46,72)(48,74)(50,76)(52,78)(54,80)(56,82)(58,84)(60,86)(62,88)(64,68)(66,70), (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(23,67)(24,68)(25,69)(26,70)(27,71)(28,72)(29,73)(30,74)(31,75)(32,76)(33,77)(34,78)(35,79)(36,80)(37,81)(38,82)(39,83)(40,84)(41,85)(42,86)(43,87)(44,88)(45,56)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66), (1,59)(2,60)(3,61)(4,62)(5,63)(6,64)(7,65)(8,66)(9,45)(10,46)(11,47)(12,48)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,78)(24,79)(25,80)(26,81)(27,82)(28,83)(29,84)(30,85)(31,86)(32,87)(33,88)(34,67)(35,68)(36,69)(37,70)(38,71)(39,72)(40,73)(41,74)(42,75)(43,76)(44,77), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,85,12,74)(2,84,13,73)(3,83,14,72)(4,82,15,71)(5,81,16,70)(6,80,17,69)(7,79,18,68)(8,78,19,67)(9,77,20,88)(10,76,21,87)(11,75,22,86)(23,55,34,66)(24,54,35,65)(25,53,36,64)(26,52,37,63)(27,51,38,62)(28,50,39,61)(29,49,40,60)(30,48,41,59)(31,47,42,58)(32,46,43,57)(33,45,44,56)>;

G:=Group( (1,85)(2,31)(3,87)(4,33)(5,67)(6,35)(7,69)(8,37)(9,71)(10,39)(11,73)(12,41)(13,75)(14,43)(15,77)(16,23)(17,79)(18,25)(19,81)(20,27)(21,83)(22,29)(24,53)(26,55)(28,57)(30,59)(32,61)(34,63)(36,65)(38,45)(40,47)(42,49)(44,51)(46,72)(48,74)(50,76)(52,78)(54,80)(56,82)(58,84)(60,86)(62,88)(64,68)(66,70), (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(23,67)(24,68)(25,69)(26,70)(27,71)(28,72)(29,73)(30,74)(31,75)(32,76)(33,77)(34,78)(35,79)(36,80)(37,81)(38,82)(39,83)(40,84)(41,85)(42,86)(43,87)(44,88)(45,56)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66), (1,59)(2,60)(3,61)(4,62)(5,63)(6,64)(7,65)(8,66)(9,45)(10,46)(11,47)(12,48)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,78)(24,79)(25,80)(26,81)(27,82)(28,83)(29,84)(30,85)(31,86)(32,87)(33,88)(34,67)(35,68)(36,69)(37,70)(38,71)(39,72)(40,73)(41,74)(42,75)(43,76)(44,77), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,85,12,74)(2,84,13,73)(3,83,14,72)(4,82,15,71)(5,81,16,70)(6,80,17,69)(7,79,18,68)(8,78,19,67)(9,77,20,88)(10,76,21,87)(11,75,22,86)(23,55,34,66)(24,54,35,65)(25,53,36,64)(26,52,37,63)(27,51,38,62)(28,50,39,61)(29,49,40,60)(30,48,41,59)(31,47,42,58)(32,46,43,57)(33,45,44,56) );

G=PermutationGroup([[(1,85),(2,31),(3,87),(4,33),(5,67),(6,35),(7,69),(8,37),(9,71),(10,39),(11,73),(12,41),(13,75),(14,43),(15,77),(16,23),(17,79),(18,25),(19,81),(20,27),(21,83),(22,29),(24,53),(26,55),(28,57),(30,59),(32,61),(34,63),(36,65),(38,45),(40,47),(42,49),(44,51),(46,72),(48,74),(50,76),(52,78),(54,80),(56,82),(58,84),(60,86),(62,88),(64,68),(66,70)], [(1,12),(2,13),(3,14),(4,15),(5,16),(6,17),(7,18),(8,19),(9,20),(10,21),(11,22),(23,67),(24,68),(25,69),(26,70),(27,71),(28,72),(29,73),(30,74),(31,75),(32,76),(33,77),(34,78),(35,79),(36,80),(37,81),(38,82),(39,83),(40,84),(41,85),(42,86),(43,87),(44,88),(45,56),(46,57),(47,58),(48,59),(49,60),(50,61),(51,62),(52,63),(53,64),(54,65),(55,66)], [(1,59),(2,60),(3,61),(4,62),(5,63),(6,64),(7,65),(8,66),(9,45),(10,46),(11,47),(12,48),(13,49),(14,50),(15,51),(16,52),(17,53),(18,54),(19,55),(20,56),(21,57),(22,58),(23,78),(24,79),(25,80),(26,81),(27,82),(28,83),(29,84),(30,85),(31,86),(32,87),(33,88),(34,67),(35,68),(36,69),(37,70),(38,71),(39,72),(40,73),(41,74),(42,75),(43,76),(44,77)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)], [(1,85,12,74),(2,84,13,73),(3,83,14,72),(4,82,15,71),(5,81,16,70),(6,80,17,69),(7,79,18,68),(8,78,19,67),(9,77,20,88),(10,76,21,87),(11,75,22,86),(23,55,34,66),(24,54,35,65),(25,53,36,64),(26,52,37,63),(27,51,38,62),(28,50,39,61),(29,49,40,60),(30,48,41,59),(31,47,42,58),(32,46,43,57),(33,45,44,56)]])

61 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E11A···11E22A···22O22P···22AI44A···44J
order1222224444411···1122···2222···2244···44
size1122244444444442···22···24···44···4

61 irreducible representations

dim1111122222244
type+++++--++
imageC1C2C2C4C4D4D11Dic11Dic11D22C11⋊D4C23⋊C4C23⋊Dic11
kernelC23⋊Dic11C23.D11D4×C22C2×C44C22×C22C2×C22C2×D4C2×C4C23C23C22C11C1
# reps121222555520110

Matrix representation of C23⋊Dic11 in GL4(𝔽89) generated by

6131041
204850
58295354
38193164
,
125000
637700
3819350
59743986
,
88000
08800
00880
00088
,
268600
873100
4982503
35338671
,
49682634
73514464
6112124
80758066
G:=sub<GL(4,GF(89))| [61,2,58,38,31,0,29,19,0,48,53,31,41,50,54,64],[12,63,38,59,50,77,19,74,0,0,3,39,0,0,50,86],[88,0,0,0,0,88,0,0,0,0,88,0,0,0,0,88],[26,87,49,35,86,31,82,33,0,0,50,86,0,0,3,71],[49,73,61,80,68,51,12,75,26,44,12,80,34,64,4,66] >;

C23⋊Dic11 in GAP, Magma, Sage, TeX

C_2^3\rtimes {\rm Dic}_{11}
% in TeX

G:=Group("C2^3:Dic11");
// GroupNames label

G:=SmallGroup(352,40);
// by ID

G=gap.SmallGroup(352,40);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-11,24,121,188,579,11525]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^22=1,e^2=d^11,a*b=b*a,d*a*d^-1=a*c=c*a,e*a*e^-1=a*b*c,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of C23⋊Dic11 in TeX

׿
×
𝔽